Latent Factor Transition for Dynamic Collaborative Filtering

نویسندگان

  • Chenyi Zhang
  • Ke Wang
  • Hongkun Yu
  • Jianling Sun
  • Ee-Peng Lim
چکیده

User preferences change over time and capturing such changes is essential for developing accurate recommender systems. Despite its importance, only a few works in collaborative filtering have addressed this issue. In this paper, we consider evolving preferences and we model user dynamics by introducing and learning a transition matrix for each user’s latent vectors between consecutive time windows. Intuitively, the transition matrix for a user summarizes the time-invariant pattern of the evolution for the user. We first extend the conventional probabilistic matrix factorization and then improve upon this solution through its fully Bayesian model. These solutions take advantage of the model complexity and scalability of conventional Bayesian matrix factorization, yet adapt dynamically to user’s evolving preferences. We evaluate the effectiveness of these solutions through empirical studies on six large-scale real life data sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Latent Factor Transition for Dynamic Collaborative Filtering | Proceedings of the 2014 SIAM International Conference on Data Mining | Society for Industrial and Applied Mathematics

User preferences change over time and capturing such changes is essential for developing accurate recommender systems. Despite its importance, only a few works in collaborative filtering have addressed this issue. In this paper, we consider evolving preferences and we model user dynamics by introducing and learning a transition matrix for each user’s latent vectors between consecutive time wind...

متن کامل

Latent Factor Interpretations for Collaborative Filtering

Many machine learning systems utilize latent factors as internal representations for making predictions. However, since these latent factors are largely uninterpreted, predictions made using them are opaque. Collaborative filtering via matrix factorization is a prime example of such an algorithm that uses uninterpreted latent features, and yet has seen widespread adoption for many recommendatio...

متن کامل

QoS-based Web Service Recommendation using Popular-dependent Collaborative Filtering

Since, most of the organizations present their services electronically, the number of functionally-equivalent web services is increasing as well as the number of users that employ those web services. Consequently, plenty of information is generated by the users and the web services that lead to the users be in trouble in finding their appropriate web services. Therefore, it is required to provi...

متن کامل

A New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation

Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...

متن کامل

Dynamic Collaborative Filtering With Compound Poisson Factorization

Model-based collaborative filtering (CF) analyzes user–item interactions to infer latent factors that represent user preferences and item characteristics in order to predict future interactions. Most CF approaches assume that these latent factors are static; however, in most CF data, user preferences and item perceptions drift over time. Here, we propose a new conjugate and numerically stable d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014